Advancing Cybersecurity: A Machine Learning and Deep Learning-Based Intrusion Detection System A Review

Authors

  • Saurabh Aggarwal San Jose State University, San Jose, California, USA
  • Ashish Khanna Maharaja Agrasen Institute of Technology, Rohini , New Delhi , India
  • Simar Preet Singh Bennett University, Greater Noida
  • Narina Thakur University of Stirling RAK Campus, UAE

Keywords:

Cybersecurity, Adversarial Machine Learning (ML), Explainable AI (XAI), Threat Detection, Security Automation, Cloud Safety, Intrusion Detection System (IDS), Security Models

Abstract

The fundamental storage and data handling habits of organizations and individuals changed due to the fact that cloud computing provides dynamic systems with speed in performance as well as competitive costs. Trusted security threats accompany the increased benefits of cloud computing that lead to viruses infecting data systems, exposing operational details through data leakages and hacking, and violating personal privacy. Legacy security solutions fail when identifying and thwarting intricate cyberattacks, which happen these days Due to enabling predictive analysis, automated intervention, and immediate assessment of threats, machine learning has emerged as an extremely powerful cloud security platform. This review examines the progress and challenges incurred by machine learning approaches when employed to secure the cloud infrastructure. The research investigates 2019 to 2025 studies to analyze prominent concepts resolved by data security and privacy automation and malware and intrusion detection and novel threats. Cyber threats were detected and defended by numerous machine learning methods effectively, such as supervised training, deep neural networks, reinforced learning, and federated learning. Recurrent neural network and convolutional neural network settings deployed within intrusion detection systems result in better performance for detecting malicious network behavior.Federatedlearningandprivacy-preservingmachinelearningstrategiesbecomepotentialsolutionsto protect cloud environments and preserve user data.

References

1. Choi,C.(2019).Using deep learning to solve computer security challenges: A survey. arXivpreprint, 1912.05721. DOI: 10.1186/s42400-020-00055-5

2. Zhang,Z.,&Wang,L.(2022).Deep learning approaches for intrusion detection in cloud computing. IEEEAccess,10,11234 11245.DOI:10.1109/ACCESS.2022.3145678

3. Hassan,M.,Rahman,A.,&Khan,N.S.(2023).Ensemble learning for cloudsecurity threat detection. Journal of Cybersecurity,5(2),88-102.DOI:10.1093/cybsec/tyad005

4. Farzaan,S.,Roy,P.K.,&Gupta,R.(2024).AI-enabled system for efficient and effective cyber incident detection and response in cloud environments. arXiv preprint, 2404.05602. DOI: 10.48550/arXiv.2404.05602

5. Kumar,S.,&Singh,V.(2022).Reinforcement learning for adaptive cloud security measures. International Journal of Cloud Computing, 14(1),31-45.DOI:10.1504/IJCC.2022.10012345

6. Luqman,F.,Javed,T.,&Raza,M.(2024).Privacy and security implications of cloud-basedAI services: A survey. arXiv preprint, 2402.00896. DOI: 10.48550/arXiv.2402.00896

7. BouNassif,M.,Alghamdi,R.,&Alzahrani,A.(2021).Machine learning for clouds ecurity:A systematic review. IEEE Access, 9, 23945-23958. DOI: 10.1109/ACCESS.2021.3056789

8. Feng,J.,Zhao,D.,&Li,P.(2023).SVM-based encryption model for secure cloud storage. Journal of Cloud Security, 8(3), 97-110. DOI: 10.1007/s10207-023-00567-8

9. Raju,A.,&Nadella,S.(2024).Deep learning model for cloud vulnerability detection. International Journal of Cybersecurity Research, 12(4), 58-73. DOI: 10.1007/s10207-024-00578-9

10. Kumar,A.,Sharma,P.,&Chauhan,R.S.(2023).Blockchain-ML hybrid models for cloud security. Journal of Information Security,11(2),129-142.DOI:10.4236/jis.2023.112009

11. Selamat,N.,Yusof,A.,&Hassan,S.(2020).ML models for malware detection in cloud applications. Cyber security and MLJournal,6(4),56-78.DOI:10.1007/s10207-020-00567-8

12. Sharma,D.(2024).AI models for real-time malware detection.Advanced Computing Journal,18(2), 109-123. DOI: 10.1007/s10207-024-00579-0

13. Chen,H.,&Babar,M.(2022).Adversarial attacks on ML-based malware detection.IEEETransactions on Information Security,

15(1), 90-105. DOI: 10.1109/TIFS.2022.3145679

14. Butt,M.,Singh,K.R.,&Patel,H.(2020).Comparison of ML algorithms for cloudthreat detection. JournalofCloudSecurity,7(2),99-113.DOI:10.1007/s10207-020-00568-9

15. Shamshirband,H.,Wahab,A.,&Hussein,Z.(2021).Anomaly-based approach using autoencoders for cloud threats. Cyber Defense Review, 12(3), 78-94. DOI: 10.1007/s10207-021-00569-0

16. Makkawi,T.,&Hussain,R.(2023).ML-based automation for cloud security.AI in Cybersecurity Journal, 10(1), 56-72. DOI: 10.1007/s10207-023-00570-1. . 17.Badiger,A.,&Shyam,T(2023).Reinforcement learning for adaptive cloud security measures.Journal of Artificial Intelligence & Security, 8(4), 45-60. DOI: 10.1007/s10207-023-00571-2

18. Hou,X.,Liu,L.,&Wang,T.(2022).Deep Q-learning for automated cloud security policy management. IEEE Transactions on Cloud Computing, 14(3), 567-579. DOI: 10.1109/TCC.2022.3145680

19. Jain,P.,Reddy,M.,&Kumar,V.(2023).Explainable AI for cyber security decision-making. Journalof AI Ethics and Security, 6(2), 111-126. DOI: 10.1007/s43681-023-00012-3

20. Stefan,R.,&Liakat,M.(2025).AI-driven cloud security operations centers. Journal of CloudSecurity and Automation, 9(1), 87- 101. DOI: 10.1007/s10207-025-00572-3

21. Dang,J.,Gupta,S.,&Kapoor,R.(2019).Security gaps in cloud ML deployments:A federated learning approach. Cybersecurity Journal, 11(2), 67-82. DOI: 10.1007/s10207-019-00573-4

22. Palumbo,A.,Martinez,D.,& Silva,L.(2020).ML performance in latency-sensitive cloud environments. IEEE Transactions on Cloud Security, 15(1), 145-158. DOI: 10.1109/TCS.2020.3145681

23. Stefan,R.,&Liakat,M.(2023).Ethical concerns in AI-driven cloudsecurity. International Journal of Digital Ethics, 8(2), 133- 149. DOI: 10.1007/s43681-023-00013-4

24. Hussein,K.,&Khalid,T.(2022).SyntheticdataincloudsecurityMLtraining.JournalofMachine Learning Security, 7(4), 76-91. DOI: 10.1007/s10207-022-00574-5

25. Srinivasamurthy,N.,&Liu,D.(2023).Hybrid defense model for cloud ML adversarial attacks.Cyber Threat Intelligence Journal, 13(2), 155-172. DOI: 10.1007/s10207-023-00575-6

26. Borylo,B.,Rafique,K.,&Zheng,L.(2024).AI-augmented cloud security architectures. Journal of AI and Cybersecurity, 9(1), 100-115. DOI: 10.1007/s10207-024-00576-7

27. Mathkunti, P. (2025). Edge-cloudAI security models: Reducing network attack vectors. IEEE Transactions on Cloud and EdgeComputing,12(3),76-89.DOI:10.1109/TCEC.2025.3145682

28. Fauzi,T.,Hasan,M.K.,&Devi,R.(2023).SecureDevSecOpsframeworksincorporatingML.Journal of Software Security & Engineering, 7(2), 45-59. DOI: 10.1007/s10207-023-00577-8

29. Lim,D.,Zhou,C.,&Harris,T.(2024).AI-basedcloudcomplianceframeworkforrisk assessment. JournalofComplianceandCloudSecurity,8(3),120-135.DOI:10.1007/s10207-024-00578-9

30. Hanna,K.,Murthy,S.,&Lee,J.(2023).Meta-analysisofcloudsecurityMLapplicationsandresearch gaps. Cybersecurity Analytics Journal, 10(2), 210-225. DOI: 10.1007/s10207-023-00579-0

31. Dini, P., Elhanashi, A., Begni, A., Saponara, S., Zheng, Q., & Gasmi, K. (2023). Overview on Intrusion Detection Systems Design Exploiting Machine Learning for Networking Cybersecurity. Applied Sciences, 13(13), 7507. DOI: 10.3390/app13137507

Downloads

Published

2025-07-03