
International Journal of Data Processing & Networking 
Issue No. 1, Volume No. 1, July 2025, Page No.1-10   

ISSN(Online)  

1 

Precision diagnosis by integration of transfer learning for colorectal cancer polyp detection 

and classification  

 

Dr . Zabiha Khan                                                          Dinakar Manupudi  

Nitte Meenakshi Institute of Technology, India           Nitte Meenakshi Institute of Technology, India            

zabiha.khan@nmit.ac.in                                               1nt21ai400.dinakar@nmit.ac.in 

 

Keshav Raj R                                                                Lahari Y              

Nitte Meenakshi Institute of Technology, India           Nitte Meenakshi Institute of Technology, India 

1nt21ai032.keshav@nmit.ac.in                                     1nt21ai034.lahari@nmit.ac.in    

 

Shreyas  

Nitte Meenakshi Institute of Technology, India 

1nt21ai054.shreyas@nmit.ac.in 

 

 

1.   Introduction  

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide, claiming hundreds of 

thousands of lives each year. According to the American Cancer Society, CRC is the third most commonly diagnosed 

cancer and the second leading cause of cancer-related deaths in the United States. On a global scale, the International 

Agency for Research on Cancer (IARC) predicts a 56% rise in CRC cases by 2040, potentially leading to nearly one 

million deaths annually. These alarming statistics underscore the critical need for improved early detection methods to 

reduce mortality rates and improve survival. 

A significant portion of colorectal cancer cases originates from polyps—small, abnormal growths in the lining of the 

colon or rectum. While many polyps are benign, some can develop into malignant tumours over time. This 

transformation occurs through a process where benign adenomatous polyps gradually acquire genetic mutations, 

causing them to proliferate uncontrollably and eventually invade surrounding tissues. This progression from a polyp 

to cancer can take years, but early detection and removal of these polyps can prevent the development of colorectal 
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Colorectal cancer (CRC) ranks among the most common and deadly cancers worldwide, posing a 
serious public health challenge. Fortunately, early detection significantly boosts the chances of 
successful treatment. Most CRC cases originate from adenomatous polyps—non-cancerous growths 
in the colon or rectum that can gradually transform into malignant tumours over time. Identifying 
these polyps during colonoscopy is therefore a critical step in preventing the progression of CRC. 
Despite its importance, polyp detection during colonoscopies remains a difficult task for clinicians. 
The procedure is visually demanding, requiring continuous focus and careful inspection of every frame 
in a live video feed. Small, flat, or partially hidden polyps can be easily overlooked, especially under 
poor lighting, motion blur, or presence of bowel contents. In addition, detection accuracy often varies 
between practitioners due to differences in training and fatigue during long procedures, leading to 
missed or delayed diagnoses. 
To address these challenges, we propose a real-time computer-aided detection system based on the 
YOLOv8 algorithm. YOLOv8 was selected for its excellent balance between detection speed and 
accuracy, outperforming previous models like YOLOv5, Faster R-CNN, and SSD in demanding real-
world settings. We further enhanced the system using transfer learning, allowing it to benefit from 
large-scale pre-trained datasets—an essential advantage in medical imaging, where labelled data is 
often scarce. 
Our model achieved a precision of 91.2%, recall of 89.7%, and an F1-score of 90.4%, marking a 12–15% 
performance increase over traditional methods. Additionally, we incorporated a feature to assess the 
probability of a polyp developing into cancer, adding valuable clinical insight beyond detection. 
By combining artificial intelligence with medical imaging, this system supports healthcare 
professionals in making faster, more accurate decisions ultimately making colorectal cancer screening 
more effective, consistent, and accessible. 
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cancer. Polyps, especially adenomas, are therefore seen as early indicators of CRC, and their detection is critical for 

preventing cancer. 

However, detecting polyps during a colonoscopy remains a difficult task. The colonoscopy procedure involves 

inserting a flexible tube with a camera (colonoscope) into the patient’s colon, where the clinician reviews the real-time 

video footage to identify polyps. Polyps can vary in size, shape, and location, and many are difficult to spot, especially 

when they are small, flat, or hidden in folds of the colon. As a result, polyps may be missed, leading to delays in 

diagnosis and treatment. This is particularly problematic in high-volume clinical settings where there is time pressure 

and the risk of clinician fatigue. 

To address these challenges, our research leverages YOLOv8 an advanced deep learning algorithm for real-time object 

detection, specifically tailored for medical imaging applications like colonoscopy. YOLOv8 (You Only Look Once, 

version 8) is the latest iteration of the YOLO family of models, designed to identify and classify objects in images 

quickly and accurately. It excels in real-time detection and high-speed inference, which is crucial for live medical 

procedures where immediate feedback is essential. YOLOv8’s strengths lie in its ability to detect objects (like polyps) 

in video footage almost instantaneously while maintaining high precision and recall. 

Several advantages make YOLOv8 particularly suited for polyp detection in colonoscopy images: 

 Real-time performance: YOLOv8 processes frames of colonoscopy video in real-time, allowing clinicians 

to receive immediate feedback during the procedure, significantly improving workflow and reducing 

detection delays. 

 Enhanced accuracy: YOLOv8 has improved architecture over its predecessors, leading to better detection 

of small, irregularly shaped polyps that might be missed using traditional methods. It also offers better 

bounding box prediction, making it more reliable in pinpointing the exact location of polyps. 

 Efficiency: YOLOv8 is highly optimized for performance, making it computationally efficient while still 

achieving high accuracy. This allows it to be run on standard medical devices without requiring costly 

hardware upgrades. 

 Anchor-free detection: YOLOv8 incorporates an anchor-free mechanism, which makes it more adaptable to 

various polyp shapes and sizes, even those that are hard to detect or partially hidden. 

In addition to YOLOv8's powerful capabilities, we also applied transfer learning to improve the system's 

performance, especially given the typical limitation of data in the medical field. Transfer learning is a technique 

where a model, initially trained on a large, diverse dataset, is adapted or "fine-tuned" on a smaller, task-specific dataset 

in this case, a dataset of colonoscopy images containing polyps. 

Transfer learning has several key benefits in medical applications: 

 Handling limited data: In medical imaging, obtaining large, labelled datasets is often difficult due to time 

constraints and the specialized knowledge required to annotate medical images. Transfer learning mitigates 

this issue by allowing the model to leverage knowledge from large, pre-trained models that have learned 

features from general datasets (such as images of everyday objects). This enables the model to apply this 

knowledge to specific medical tasks, even when data is limited. 

 Faster training: Since the model has already learned to detect basic features from the general dataset, transfer 

learning speeds up the training process, allowing the system to be deployed faster and more efficiently in 

clinical environments. 

 Improved generalization: Transfer learning helps the model generalize better to unseen data, improving its 

robustness. For example, it can handle different types of polyps, varying lighting conditions, and different 

colonoscopy equipment, thus making the system more reliable in diverse real-world clinical settings. 
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By fine-tuning YOLOv8 on a specialized dataset of colonoscopy images, the model is able to accurately detect and 

classify polyps even with a limited number of labelled medical images. The addition of transfer learning helps 

overcome the typical data scarcity problem in healthcare, making it possible to train a high-performing model with 

relatively small datasets. 

Our system not only detects polyps but also provides insights into their likelihood of malignancy, offering valuable 

clinical assistance in decision-making. This feature could support doctors in identifying potentially cancerous polyps 

earlier, allowing for timely intervention and treatment. 

In conclusion, our research aims to bridge the gap between advanced AI technologies and practical healthcare 

applications, making colorectal cancer screening more effective, efficient, and accessible. By combining the power of 

YOLOv8 for real-time polyp detection with transfer learning to overcome data limitations, we hope to provide a tool 

that enhances diagnostic accuracy, reduces errors, and ultimately saves lives by facilitating earlier and more reliable 

detection of colorectal cancer. 

2.   Literature Review 

AI and machine learning  technologies have significantly improved the accuracy and efficiency of polyp detection. For 

enhancing the performance results, Pacal et al[3] added the pre-processing and post-processing with NVIDIA Tensor 

RT on YOLO algorithm. They incorporated data augmentation techniques during preprocessing, such as flipping, 

rotation, shearing, hue adjustments, and cropping. After implementing architecture changes their model had achieved 

greater detection accuracy. 

Nogueira-Rodriguez et al. Budai [4] used YOLOv3 as a pre-trained backbone to achieve polyp detection in real-time. 

In order to eliminate some false positives, an object-tracking algorithm was used in post-processing to improve 

detection. In contrast, Zhang et al. [5] designed an automated detection and classification that focuses on transfer 

learning from non-medical datasets. This two-stage approach involved distinguishing polyp images from non-polyp 

images, followed by histological analysis, showcasing the effectiveness of transfer learning in medical applications 

and its potential to enhance accuracy. 

Yuan and Meng [6] developed a new stacked sparse autoencoder method to detect polyps. But not all public datasets 

lend themselves to their methods. Therefore, our model was analysed only with methods that were appropriately 

evaluated using heuristic approaches on public datasets. While most existing techniques emphasize polyp 

segmentation, they often overlook the classification of polyp grades. 

Authors of [7] proposed Y-Net, a U-Net-based polyp detection model for colonoscopy images. Y-Net consists of two 

encoders and one decoder, making it well-suited for datasets with a limited number of samples.  The two encoders are 

pretrained using weights coming from ImageNet and Xavier snapshot random variable distribution respectively, and 

both of them use SELU activation but not ReLU. Cross-validation did not perform as expected for model testing; 

instead, the ASU-Mayo dataset was specifically used for evaluation. However, it has drawbacks in reflection-based 

cases, in polyp-like structures, and in flat lesion. 

In [8] the authors proposed a saliency network to reduce white light reflection in static polyp images using a 

neutrosophic theoretic approach and a -value Neutrosophic set (SVNS) to obtain each image computed by 

colonoscopy. 

The authors[9] suggested an auto-segmentation and detection based with an efficient capability of handling the shuffle 

in the channel, the shuffle-efficient channel attention network (Seca-NET) is an advanced polyp detection and 

segmentation a model is considered for colonoscopy images. 

The creators of [10] Y-Net, a U-Net-based framework tailored for polyp detection in colonoscopy images, have made 

significant advancements. Y-Net is specifically designed for small training datasets, incorporating two encoders and 

one decoder. The first encoder's weights are pre-trained on ImageNet, while the second encoder's weights are initialized 

using the Xavier normal distribution. Both encoders utilize SELU activation instead of the commonly used ReLU. The 
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model was evaluated on the ASU-Mayo dataset without cross-validation, achieving a reported precision of 87.4%, 

84.4% recall and 85.9% F1 score. However, it encountered difficulties because of reflections, structures that mimic 

polyps and flat lesions present on the wall. 

In [11] the authors presented a saliency-detection network based on Neutrosophic theory. The negative value 

Neutrosophic set (SVNS) was employed to reduce white light reflections in static polyp images, aiming to magnify  

the quality and clarity of colonoscopy images. An additional channel attention network, known as Seca-NET, was 

introduced to facilitate the automated segmentation and detection of polyps in colonoscopy images. However, the 

effectiveness of these approaches depends on various factors, including the quality of the original images. Although 

they show promise, further research is needed to validate their efficiency, as progress in this field is essential for 

improving medical imaging 

Visually examining the research by Shin et al. [12] introduced a region-based deep CNN model for polyp detection. 

Zhang et al.  demonstrated an approach called single shot multi-box detector where shifted max-pooling layers were 

incorporated with 90.4% detection accuracy. Morales et al. [13] employed an adaptive approach with a The Markov 

Random Field (MRF) approach segmented images into super pixels for further analysis  after which super pixels were 

processed with Local Binary Pattern (LBP) and color features yielding 60.77% dice score. Similarly, Yang et al. [14] 

created an MRCNN allowing for PR ROI pooling, recovering only good quality images, and merging data from various 

patients to improve the model's training efficiency leading to 76% AP in detection and 86.87% IoU in segmentation.  

3.   Research Model and Hypotheses 

This project adopts a systematic approach to improve the precision of polyp detection, classification, and segmentation 

in the context of colorectal cancer (CRC). The first step in this process involves assembling a comprehensive dataset 

that includes annotated images of the colorectal region. This dataset not only contains image data but also labelled 

information about different types of polyps, such as benign, potentially precancerous, or cancerous, along with 

bounding box annotations that mark their precise locations.Once the dataset is compiled, pre-processing techniques 

are applied to enhance the quality and consistency of the images. This includes resizing, normalization, and 

augmentation, which helps the model become more robust to changes in image conditions such as varying image 

contrast or the small size of polyps. These pre-processing steps aim to improve the model’s performance under diverse 

real-world scenarios. 

The YOLOv8 model is then used as the base model, loaded with pre-trained weights through transfer learning. This 

leverages YOLOv8's extensive experience in object detection, allowing it to quickly adapt to the task of detecting 

colorectal polyps. Transfer learning is particularly beneficial in this case because it allows the model to benefit from 

previously learned features, significantly reducing the need for a large amount of annotated medical data. The model 

is trained using the prepared dataset to address common challenges in medical imaging, such as the small size of polyps 

or variations in image contrast.As the model trains, it learns to distinguish and categorize polyps with high precision, 

while also generating bounding boxes that accurately localize the polyps within the images. Special attention is given 

to non-single-polyp images, where the model must learn to detect multiple polyps within a single image, ensuring that 

each polyp is correctly identified and localized. This step is essential in ensuring that the model can handle complex 

clinical cases, where multiple polyps may be present. 

After training, the model is validated and tested on unseen data to evaluate its performance. Key metrics such as 

Intersection over Union (IoU), bounding box alignment, accuracy, precision, and recall are used to assess how well 

the model performs. To further improve the model's output and reduce errors, post-processing steps are employed to 

minimize false positives and enhance the overall detection results.The final model is not only capable of detecting 

polyps, but it can also classify the likelihood of each detected polyp turning into cancer. This feature adds immense 

value to the diagnostic process, helping clinicians to prioritize polyps that may pose a higher risk of becoming 

malignant. 

YOLOv8 combined with Transfer Learning offers a powerful solution to the challenges of polyp detection in 

colonoscopy images. Unlike traditional deep learning approaches that require massive amounts of labelled medical 
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data to train from scratch, YOLOv8’s real-time performance and accuracy make it particularly well-suited for the task. 

YOLOv8 is designed for speed, allowing it to analyse images quickly in real-time—a critical requirement during 

colonoscopy procedures where immediate feedback is necessary. Additionally, YOLOv8's ability to handle small and 

irregularly shaped objects makes it perfect for detecting polyps, which often vary in size, shape, and location. When 

combined with transfer learning, YOLOv8 becomes even more effective. Transfer learning allows the model to 

leverage pre-trained knowledge from a large dataset, enabling it to perform well even when limited labelled medical 

data is available. This is especially important in the medical field, where acquiring large annotated datasets is often 

difficult and expensive. By fine-tuning the pre-trained model on the specific polyp detection task, we can achieve high 

accuracy with fewer training examples, making the approach both data-efficient and computationally efficient. In 

comparison to other deep learning models, YOLOv8's real-time detection capabilities, flexibility with varying polyp 

sizes, and reduced need for extensive data make it the best choice for improving polyp detection and classification in 

colorectal cancer screening. 

4.   Methodology  

 

                                             Fig 4.1 Methodology 

A Data collection and dataset Organization 

Our proposed model has 3 main stages detection ,classification and predicting likelihood of cancer. First step is we 

have collected images from the PolypDB dataset which is a large-scale ,multi-center and multi-modality dataset . This 

dataset is efficient for training our model . Prior to training, we pre-process our images by resizing all the samples to 

a dimension of 256 * 256 pixels. This step ensures that all images have the same dimensions and can be processed 

easily. We then focused on normalizing  our images then the pixel values are between 0 and 1. This step is crucial as 

it ensures that the pixel values are in a consistent range and can be processed effectively by our model. The PolypDB 

dataset comprises 3934 colonoscopy polyp images and segmented  masks, with polyps of different sizes, shapes. Each 

image has been manually annotated and verified by a team of 10 gastroenterologists with over 10 years of experience. 
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We divide our dataset for 80% training and 20% testing. The images must be carefully sorted and categorized into 

three subsets: training, validation, and testing. Each image should have a corresponding annotation file that contains 

bounding box coordinates and class labels (e.g., polyp vs. non-polyp or different polyp types). These annotations need 

to be converted into YOLO format, where each label file contains the class index followed by normalized x_center, 

y_center, width, and height. Proper organization is essential for ensuring compatibility with the YOLOv8 training 

framework. 

B Data preprocessing 

Once the dataset is organized, the next step is to preprocess the images and labels for uniformity and compatibility. 

All images are resized to a consistent resolution  256*256 pixels to match YOLOv8's input requirements. Pixel values 

are normalized (scaled between 0 and 1) to ensure consistency across samples. Preprocessing also includes data 

augmentation techniques such as flipping, rotation, cropping, brightness adjustment, and noise injection to enhance 

generalization, especially in medical imaging where variability is limited. These augmentations increase the effective 

size of the dataset and help the model learn more robust features. It’s also important to ensure annotation files reflect 

any transformation applied to the images. 

3. Set Up YOLOv8 Environment and Model Initialization 

With data ready, the YOLOv8 environment must be configured. This involves installing the Ultralytics YOLOv8 

package via pip (pip install ultralytics) along with dependencies such as PyTorch, OpenCV, and Matplotlib. A suitable 

Python development environment (like VS Code) is used. GPU support is highly recommended to reduce training 

time. Test runs using sample images and pretrained weights should be performed to verify that the YOLOv8 installation 

and configuration are functioning correctly. In this step, a pretrained YOLOv8 model such as yolov8n.pt (nano) is 

loaded. These models are trained on large datasets like COCO, which enables them to recognize general features such 

as edges, textures, and shapes. Initializing with these pretrained weights allows the model to reuse its learned 

knowledge for a different but related task in this case polyp detection in medical images. This significantly reduces 

training time and improves performance, especially when medical datasets are limited in size. 

5. Data Input Formatting and Model Configuration 

Before training begins, it is crucial to format the data correctly for the YOLOv8 pipeline. A YAML configuration file 

is created to define the path to the training and validation image folders and to list the class names (e.g., ['polyp'] or 

['adenoma', 'hyperplastic']). All images are stored in folders named images/train, images/Val, and images/test, with 

their corresponding annotation files placed in labels/train, labels/Val, and labels/test. The annotations must exactly 

match the image filenames. This step ensures that YOLOv8 can seamlessly load and process the data during training 

and inference. Model configuration involves setting key hyperparameters for the training process. Parameters such as 

image size (imgsz), batch size (batch), learning rate (lr0), and number of epochs are adjusted based on the dataset size 

and available hardware. Additional settings such as optimizer choice, momentum, weight decay, and patience (for 

early stopping) are fine-tuned for optimal performance. Depending on the polyp size in the dataset, anchor boxes may 

also be manually defined or auto-calculated to improve bounding box accuracy. 

7. Transfer Learning Integration 

Transfer learning plays a vital role in medical imaging tasks. YOLOv8’s pretrained weights are fine-tuned on the new 

polyp dataset through transfer learning. This allows the model to retain general features learned from the COCO dataset 

while adapting to the specific patterns found in colonoscopy images. Since medical data often lacks the volume 

required for training deep networks from scratch, transfer learning helps the model converge faster and perform better 

by building on prior knowledge. 

8. Freeze Initial Layers and fine-tune final layers 

To effectively apply transfer learning, the initial layers of the YOLOv8 model those responsible for learning basic, 

low-level visual features are frozen. These layers are already optimized for recognizing edges, colours, and textures, 
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which are generally applicable across most domains. By freezing them, we prevent their weights from being updated 

during training, focusing learning efforts on the more domain-specific layers. While the earlier layers remain static, 

the deeper layers of the network are unfrozen and fine-tuned to learn features specific to colorectal polyp detection. 

These layers help the model identify subtle patterns, shapes, and colour variations that distinguish different types of 

polyps or differentiate polyps from healthy tissue. Fine-tuning these final layers ensures the model adapts well to the 

intricacies of the medical dataset. 

 9. Model Training and Polyp detection 

The training process begins using the pre-processed and formatted dataset. The model learns to detect and classify 

polyps by minimizing the loss functions associated with objectness, bounding box regression, and class prediction. 

The training progress is monitored using metrics like loss curves, accuracy, and validation performance. Tools like 

Tensor Board or YOLOv8’s built-in visualization tools are used to analyse these metrics in real time. Training may 

span several epochs depending on convergence and resource availability. After training, the model is evaluated on new 

colonoscopy images to detect polyps. The model scans each image and identifies regions of interest, drawing bounding 

boxes around suspected polyps. This step simulates real-world usage where the model aids clinicians by automatically 

highlighting potential abnormalities in frames from endoscopic procedures. 

10. Generation of Bounding Boxes with Confidence Scores 

For each detected object, the model generates a bounding box along with a confidence score, indicating the probability 

that the object is a polyp. These scores help prioritize detections and assess model certainty. A confidence threshold is 

often applied to filter out low-confidence detections. Accurate bounding boxes and confidence scores provide 

clinicians with quick and reliable insights during diagnostics. 

11. Polyp Classification 

If the model is trained for multiclass classification, it can differentiate between various types of polyps such as 

adenomatous, hyperplastic, or serrated polyps. This classification step is critical because different polyp types carry 

different cancer risks. Accurate classification helps in making informed clinical decisions, early diagnosis, and 

effective treatment planning. 

12. Model Evaluation and Testing and deployment 

To assess the model's reliability and generalizability, it is tested on the reserved test dataset. Metrics such as precision, 

recall, mean Average Precision (mAP), and F1-score are computed. These metrics provide insight into how well the 

model detects polyps and avoids false positives or negatives. Evaluation ensures the model is robust and performs well 

under real clinical scenarios. The final stage involves deploying the trained and tested model into a real-world setting. 

This could be in the form of a web-based application, desktop software, or integration into clinical systems for real-

time analysis during colonoscopies.  

5.   Results  

Employing the YOLOv8 model coupled with transfer learning, the colorectal cancer polyp detection system attained 

an accuracy of 92.8%, the model effectively estimated the likelihood of detected polyps undergoing cancerous 

transformation with an accuracy rate of 88.9%. With a precision of 92.63%, recall of 93.62%, and an F1-score of 

93.12%, the system demonstrated high effectiveness in detecting polyps and distinguishing between cancerous and 

non-cancerous cases, reinforcing its applicability in early colorectal cancer diagnosis. The integration of transfer 

learning further enhanced the model’s adaptability to new data, improving overall performance. 
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                   Fig 5.1 Confusion Matrix including the types of polyps  

 

               Fig 5.2 Training epochs including box loss and class loss 50 times  
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                        Fig 5.3 Polyp detection and likelihood score and classification of polyps 

                    

Fig 5.4 F1-confidence score of various polyps                                Fig 5.5 Precision-Confidence score of polyps                   

7.   Conclusion 

In conclusion, this paper emphasizes the integration of YOLOv8 and transfer learning for detecting and classifying 

colorectal cancer polyps. This method can find and sort polyps in medical pictures, which steps up what our current 

diagnostic tools can do. Using these AI-powered technologies could cause a revolution in finding colorectal cancer . 
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This might lead to smarter treatment choices better use of healthcare resources, and better care for patients. This will 

benefit the people with early polyp stage to get faster treatment and cure. 
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